Fadak.IR Фадак Решения
English Русский العربية فارسی
Статьи Управление Исследования Язык


/ О Веб-сайт

---


         1. عملکرد (Performance)
         2. کتابخانه‌ها و ابزارها
         3. یادگیری و توسعه
         4. مقیاس‌پذیری (Scalability)
         5. کاربردها
         نتیجه‌گیری
         Why Python Dominates AI/ML
         Challenges for Go in AI/ML
         When and Why Go Can Be Useful
         Alternative Paths
         Conclusion
         Python for Machine Learning
         Golang for Machine Learning
         Comparative Use Cases
         Conclusion
         1. کاربرد Golang در یادگیری ماشین (ML):
         2. شرکت‌های استفاده‌کننده از Go:
         3. دلایل عدم محبوبیت Go در برخی حوزه‌ها:
         4. مزایا و محدودیت‌های کلی Go:
         نتیجه‌گیری:

انتخاب بین گو (Go) و جاوااسکریپت (JavaScript) برای توسعه پروژه‌های مرتبط با هوش مصنوعی به نوع پروژه، نیازمندی‌ها، و سطح آشنایی تیم شما با این زبان‌ها بستگی دارد. بیایید این دو زبان را از چند جنبه مقایسه کنیم:


1. عملکرد (Performance)


2. کتابخانه‌ها و ابزارها


3. یادگیری و توسعه


4. مقیاس‌پذیری (Scalability)


5. کاربردها


نتیجه‌گیری

برای تصمیم‌گیری بهتر، بهتر است نیازمندی‌های پروژه و مهارت‌های تیم خود را در نظر بگیرید.

 

 

Why Python Dominates AI/ML

  1. Library Ecosystem:
    Python has a rich set of libraries and frameworks (e.g., TensorFlow, PyTorch, Numpy, Scikit-learn) tailored for ML, which makes it the go-to language. Go lacks this ecosystem.

  2. C Interoperability:
    Python’s ability to interface seamlessly with optimized C/C++ libraries (via APIs like Cython or NumPy) is a major advantage. Go's integration with C is more complex and less efficient.

  3. Notebook/REPL Environment:
    Tools like Jupyter Notebook allow rapid iteration in ML workflows, enabling researchers to prototype and experiment effectively. Go doesn’t offer a similar interactive experience.

  4. Glue Language Paradigm:
    Python serves as a “configuration” or scripting layer for running optimized backend code. Its flexibility allows developers to focus on logic and experimentation rather than low-level optimizations.

  5. Low Barrier to Entry:
    Python’s simple syntax and readability attract data scientists and researchers, most of whom aren't professional software engineers. Go's verbosity can be a deterrent for this audience.


Challenges for Go in AI/ML

  1. Performance Misconceptions:
    While Go is efficient, most ML workloads are computationally intensive and offloaded to GPUs or specialized hardware. The bottleneck isn’t the Python code but the backend libraries written in C/C++ or CUDA.

  2. Verbosity and Limited Features:
    Go’s lack of functional programming features (like map/filter) and verbosity make it less suited for the data manipulation tasks common in AI/ML workflows.

  3. No Built-in Multidimensional Arrays or Tensors:
    Python’s NumPy and similar libraries make matrix operations simple. Go would need significant development effort to match these capabilities.

  4. GC and Latency in Production:
    Go's garbage collector (GC) can introduce latency issues in production, which might be problematic for real-time ML inference compared to C++ or Rust.


When and Why Go Can Be Useful

  1. Production Inference:
    Go’s strong concurrency model and lightweight runtime make it suitable for deploying ML models in production, particularly in distributed systems or edge devices.

  2. Integration with Existing Systems:
    Companies with Go-based infrastructure might use Go for integrating ML inference models to maintain consistency and reduce dependencies.

  3. Custom ONNX Runtime Development:
    As one commenter noted, creating an ONNX-compatible runtime in Go for lightweight deployment scenarios is a practical approach, leveraging Go’s single-binary deployments.


Alternative Paths

  1. Julia:
    If performance and mathematical programming are priorities, Julia offers an excellent balance of high-level syntax with near-C performance.

  2. Rust:
    For those seeking a systems-level language for ML with minimal runtime overhead, Rust is gaining traction, particularly for deploying inference engines.

  3. Hybrid Approach:
    Many teams use Python for prototyping and training but deploy models in Go, C++, or Rust for performance-critical applications.


Conclusion

Go has its niche in production systems but lacks the ecosystem and tools needed for AI/ML research and prototyping. Python remains dominant because of its extensive library support, ease of use, and role as a bridge to high-performance computing. However, as ML tooling evolves, we may see more hybrid approaches where Go or other languages complement Python’s strengths.

 

 

 

The discussion largely centers around the comparison of Golang (Go) and Python for machine learning (ML). Here's a consolidated view:


Python for Machine Learning

  1. Strengths:

    • Simplicity: Easy to learn and use, with concise syntax that reduces development time.
    • Extensive Libraries and Frameworks: Offers powerful libraries like TensorFlow, PyTorch, and scikit-learn.
    • Community Support: Large and active ML community, ensuring accessible support and resources.
    • Prototyping Speed: Ideal for research and prototyping due to its high-level abstractions.
    • Industry Standard: Widely used in applied ML, making it a primary language for ML engineer roles.
  2. Weaknesses:

    • Performance: Slower than compiled languages like Go, although many Python ML libraries use optimized C/C++ backends to mitigate this.

Golang for Machine Learning

  1. Strengths:

    • Performance: As a compiled language, Go provides faster execution times, making it suitable for computationally intensive tasks.
    • Concurrency: Built-in support for parallelism can enhance scalability in ML applications.
    • Simplicity and Reliability: Offers a clean syntax and a strong type system that reduces runtime errors.
    • Distributed Computing: Native support for distributed systems.
  2. Weaknesses:

    • Limited Ecosystem: Fewer mature ML libraries compared to Python (e.g., gonum, golearn).
    • Learning Curve: New syntax and paradigms for Python-native developers.
    • Community: Smaller ML-focused community, leading to limited resources and examples.

Comparative Use Cases


Conclusion

While Go has certain advantages like performance and concurrency, Python remains the dominant choice for ML due to its extensive ecosystem, ease of use, and widespread adoption. For newcomers or general ML tasks, Python is highly recommended. Go might serve niche use cases or specific production needs where performance and concurrency outweigh the need for a rich ecosystem.

 

 

در این متن، دیدگاه‌های مختلف درباره Golang مطرح شده است که در ادامه خلاصه‌ای از نکات کلیدی ارائه می‌شود:

1. کاربرد Golang در یادگیری ماشین (ML):

2. شرکت‌های استفاده‌کننده از Go:

3. دلایل عدم محبوبیت Go در برخی حوزه‌ها:

4. مزایا و محدودیت‌های کلی Go:

نتیجه‌گیری:

Go زبان مناسبی برای توسعه سیستم‌های بک‌اند و خدمات مقیاس‌پذیر است، اما برای کاربردهای یادگیری ماشین یا پردازش‌های علمی، گزینه‌هایی مانند Python، Julia و LuaJIT همچنان برتر هستند.

 

 

 


Статьи
Цифровые медиа
Русский язык
Религия
Другый предмет
Продукты и Услуги
Про Фадак
О Веб-сайт
Управление
Журнал современного менеджмента
Управленческие стихи
Цитаты о фотографии
Фото написано
Банк исследователей управления
Тема статей по менеджменту
Образовательные ресурсы (семинары и университеты)
Исследования
Обсерватория - деятели
Обсерватория - Культурные
Обсерватория - Академическая
Обсерватория - СМИ
Обсерватория - научные мероприятия
Язык
Словарь
Тест по русскому языку
Русская пословица
Английская пословица
Четыре языковых предложения
logo-samandehi
О | Свяжитесь с нами | Политика конфиденциальности | Условия | Политика в отношении файлов cookie |
Версия (пре-альфа) 2000-2022 CMS Fadak. ||| Version : 5.2 ||| By: Fadak Solutions Старая версия