هوش مصنوعی (به انگلیسی: Artificial intelligence) (به اختصار: AI)، هوشی است که توسط ماشینها ظهور پیدا میکند، در مقابل هوش طبیعی[الف] که توسط جانوران شامل انسانها نمایش مییابد. اما پیش از هرچیز باید این موضوع را دانست که کلمه هوش، نشان دهنده امکان استدلال است و اینکه آیا هوش مصنوعی میتواند به توانایی استدلال دست یابد یا خیر، خود موضوع اختلاف محققان است. کتابهای AI پیشرو، این شاخه را به عنوان شاخه مطالعه بر روی «عوامل هوشمند» تعریف میکنند: هر سامانهای که محیط خود را درک کرده و کنشهایی را انجام میدهد که شانسش را در دستیابی به اهدافش بیشینه میسازد.[ب] برخی از منابع شناخته شده از اصطلاح «هوش مصنوعی» جهت توصیف ماشینی استفاده میکنند که عملکردهای «شناختی» را از روی ذهن انسانها تقلید میکنند، همچون «یادگیری» و «حل مسئله»، با این حال این تعریف توسط محققان اصلی در زمینه AI رد شده است.[پ]
کاربردهای هوش مصنوعی شامل موتورهای جستجو پیشرفتهٔ وب (مثل گوگل و بینگ)، سامانه توصیهگر (که توسط یوتیوب، آمازون و نتفلیکس استفاده شدهاند)، فهم زبان انسانها (همچون سیری و آمازون الکسا)، خودروهای خودران (مثل تسلا)، هوش مصنوعی مولد یا خلاقیت محاسباتی (مثل چتجیپیتی یا تولید اثر هنری مانند دال-ئی و میدجرنی) تصمیمگیری خودکار و رقابت در بالاترین سطوح سامانههای بازی استراتژیک (همچون شطرنج و گو).[۲] با بیشتر شدن توانایی ماشینها، وظایفی که نیازمند «هوشمندی» هستند اغلب از تعریف AI برداشته میشود، پدیدهای که به آن اثر هوش مصنوعی گفته میشود.[۳] به عنوان مثال، فهم نوری کاراکتر را اغلب از چیزهایی که AI در نظر گرفته میشوند مستثنی میکنند،[۴] چرا که این فناوری تبدیل به فناوری عادی و روزمرهای شدهاست.[۵]
هوش مصنوعی در ۱۹۵۶ میلادی تبدیل به شاخهای آکادمیک شد و در سالهای پس از آن چندین موج خوشبینی را تجربه کرده[۶][۷] و مجدد دچار امواج ناامیدی و کمبود بودجه شده (که به آن «زمستان AI» میگویند)،[۸][۹] سپس فناوریهای جدیدی در پی آن آمده و موفقیت و بودجههای تحقیقاتی این حوزه مجدداً احیا گشتهاند.[۷][۱۰] تحقیقات AI رهیافتهای متفاوتی را از زمان تأسیسش امتحان کرده و آنها را کنار گذاشتهاست، رهیافتهایی چون: شبیهسازی مغز، مدلسازی حل مسئله توسط مغز انسان، منطق صوری، بانکهای اطلاعاتی بزرگ دانش و تقلید رفتار جانوران. در اولین دهههای قرن ۲۱ میلادی، یادگیری ماشینی که شدیداً از آمار ریاضیاتی بهره میبرد در این حوزه غلبه داشت و این فناوری اثبات کرد که به شدت موفق است و به حل چندین مسئله چالشبرانگیز در صنعت و فضای آکادمیک کمک نمود.[۱۱][۱۰]
شاخههای مختلف تحقیقات هوش مصنوعی حول اهداف بهخصوصی متمرکز بوده و از ابزارآلات خاصی استفاده میکنند. اهداف سنتی تحقیقات AI شامل این موارد اند: استدلال، نمایش دانش، برنامهریزی، یادگیری، پردازش زبان طبیعی، ادراک و توانایی در جابجایی و دستکاری اشیاء.[ت] هوش جامع (توانایی حل مسائل دلخواه) در میان اهداف بلند مدت این حوزه است.[۱۲] جهت حل چنین مسائلی، محققان AI فنون حل مسئله وسیع و یکپارچهای را شامل این موارد به کار بستهاند: جستوجو و بهینهسازی ریاضیاتی، منطق صوری، شبکههای عصبی مصنوعی و روشهای مبنی بر آمار، احتمالات و اقتصاد. AI همچنین با حوزههایی چون علوم کامپیوتر، روانشناسی، زبانشناسی، فلسفه و بسیاری از حوزههای دیگر مرتبط است.
این شاخه بر این فرض بنا شدهاست که هوش انسانی «را میتوان به دقت توصیف نمود، به طوری که میتوان آن را توسط یک ماشین شبیهسازی نمود».[ث] این فرض بحثهای فلسفی را پیرامون ذهن و اخلاقیات خلق موجودات هوشمند برانگیخته است، موجوداتی که دارای هوش شبیه-انسان اند. این مسائل توسط افسانهها، داستانهای تخیلی و فلسفه از زمانهای باستان مورد کاوش واقع شدهاند.[۱۴] ادبیات علمی-تخیلی و آیندهپژوهی نیز پیشنهاد میدهند که AI با پتانسیل و قدرت عظیمی که دارد، ممکن است منجر به ایجاد ریسک وجودی برای بشریت گردد.[۱۵][۱۶]
تاریخچه
مقالهٔ اصلی: تاریخ هوش مصنوعی
هوش مصنوعی توسط فلاسفه و ریاضیدانانی نظیر جرج بول که اقدام به ارائهٔ قوانین و نظریههایی در مورد منطق نمودند، مطرح شده بود. با اختراع رایانههای الکترونیکی در سال ۱۹۴۳، هوش مصنوعی، دانشمندان آن زمان را به چالشی بزرگ فراخواند. در این شرایط، چنین بهنظر میرسید که این فناوری قادر به شبیهسازی رفتارهای هوشمندانه خواهد بود.
با وجود مخالفت گروهی از متفکران با هوش مصنوعی که با تردید به کارآمدی آن مینگریستند تنها پس از چهار دهه، شاهد تولد ماشینهای شطرنج باز و دیگر سامانههای هوشمند در صنایع گوناگون شدیم.
حوزه پژوهش در زمینه هوش مصنوعی در یک کارگاه آموزشی در کالج دارتموت در سال ۱۹۵۶ متولد شد.[۱۷][۱۸][۱۹] شرکت کنندگان آلن نیول (دانشگاه کارنگی ملون)، هربرت سیمون (دانشگاه کارنگی ملون)، جان مککارتی (مؤسسه فناوری ماساچوست)، ماروین منسکی (مؤسسه فناوری ماساچوست) و آرتور ساموئل (آی بی ام) از بنیانگذاران و رهبران پژوهش در زمینه هوش مصنوعی شدند.[۱۷] آنها به همراه دانشجویانشان برنامههایی نوشتند که مطبوعات آن را «شگفتآور» توصیف میکردند، رایانهها استراتژیهای بردِ بازی چکرز را فرا میگرفتند،[۲۰][۲۱] سوالاتی در جبر حل میکردند، قضیههای منطقی اثبات میکردند و انگلیسی صحبت میکردند.[۱۷][۲۲] در اواسط دهه ۱۹۶۰ میلادی وزارت دفاع آمریکا سرمایهگذاریهای سنگینی در حوزه پژوهش در زمینه هوش مصنوعی انجام میداد،[۱۸] در آن دهه آزمایشگاههای فراوانی در سراسر جهان تأسیس شد.[۲۳] بنیانگذاران هوش مصنوعی در مورد آینده خوشبین بودند: هربرت سیمون پیشبینی کرد «ماشینها ظرف بیست سال قادر به انجام هر کاری هستند که یک انسان میتواند انجام دهد». ماروین مینسکی، نوشت: «در طی یک نسل … مسئله هوش مصنوعی اساساً حل خواهد شد».[۱۸]
نام هوش مصنوعی در سال ۱۹۶۵ میلادی به عنوان یک دانش جدید ابداع گردید. البته فعالیت در این زمینه از سال ۱۹۶۰ میلادی شروع شد. (مرجع۱) بیشتر کارهای پژوهشی اولیه در هوش مصنوعی بر روی انجام ماشینی بازیها و نیز اثبات قضیههای ریاضی با کمک رایانهها بود. در آغاز چنین به نظر میآمد که رایانهها قادر خواهند بود چنین فعالیتهایی را تنها با بهره گرفتن از تعداد بسیار زیادی کشف و جستجو برای مسیرهای حل مسئله و سپس انتخاب بهترین روش برای حل آنها به انجام رسانند.
اصطلاح هوش مصنوعی برای اولین بار توسط جان مککارتی (که از آن بهعنوان پدر علم و دانش تولید ماشینهای هوشمند یاد میشود) استفاده شد. وی مخترع یکی از زبانهای برنامهنویسی هوش مصنوعی به نام لیسپ (به انگلیسی: lisp) است. با این عنوان میتوان به هویت رفتارهای هوشمندانه یک ابزار مصنوعی پی برد. (ساختهٔ دست بشر، غیرطبیعی، مصنوعی) حال آنکه هوش مصنوعی به عنوان یک اصطلاح عمومی پذیرفته شده که شامل محاسبات هوشمندانه و ترکیبی (مرکب از مواد مصنوعی) است.
از اصطلاح "Strong and Weak AI" میتوان تا حدودی برای معرفی ردهبندی سامانهها استفاده کرد.
آزمون تورینگ
آزمون تورینگ
آزمون تورینگ[۲۴] آزمونی است که توسط آلن تورینگ در سال ۱۹۵۰ در نوشتهای به نام «محاسبات ماشینی و هوشمندی» مطرح شد. در این آزمون شرایطی فراهم میشود که شخصی با ماشینی تعامل برقرار کند و پرسشهای کافی برای بررسی اقدامات هوشمندانهٔ ماشین، از آن بپرسد. چنانچه در پایان آزمایش نتواند تشخیص دهد که با انسان یا با ماشین در تعامل بودهاست، آزمون با موفقیت انجام شدهاست. تاکنون هیچ ماشینی از این آزمون با موفقیت بیرون نیامده است. کوشش این آزمون برای تشخیص درستی هوشمندی یک سامانه است که سعی در شبیهسازی انسان دارد.
تعریف و طبیعت هوش مصنوعی
سامانه یک خودروی بدون راننده میتواند از یک شبکه عصبی استفاده کند تا بتواند تشخیص دهد که کدام قسمت از تصاویر میتواند با تصویر یک انسان تطابق داده شود، و سپس آن قسمت را به شکل یک مستطیل با حرکت آهسته شبیهسازی کند که باید از برخورد با آن خودداری شود.[۲۵][۲۶]
هنوز تعریف دقیقی برای هوش مصنوعی که مورد توافق دانشمندان این علم باشد ارائه نشدهاست و این به هیچ وجه مایهٔ تعجب نیست. چرا که مقولهٔ مادر و اساسیتر از آن، یعنی خود هوش هم هنوز بهطور همهجانبه و فراگیر تن به تعریف ندادهاست. در واقع میتوان نسلهایی از دانشمندان را سراغ گرفت که تمام دوران زندگی خود را صرف مطالعه و تلاش در راه یافتن جوابی به این سؤال عمده نمودهاند که: هوش چیست؟
اما اکثر تعریفهایی که در این زمینه ارائه شدهاند بر پایه یکی از ۴ باور زیر قرار میگیرند:
- سامانههایی که بهطور منطقی فکر میکنند
- سامانههایی که بهطور منطقی عمل میکنند
- سامانههایی که مانند انسان فکر میکنند
- سامانههایی که مانند انسان عمل میکنند (مرجع۱)
شاید بتوان هوش مصنوعی را اینگونه توصیف کرد: «هوش مصنوعی عبارت است از مطالعه این که چگونه رایانهها را میتوان وادار به کارهایی کرد که در حال حاضر انسانها آنها را صحیح یا بهتر انجام میدهند» (مرجع۲). هوش مصنوعی به هوشی که یک ماشین از خود نشان میدهد یا به دانشی در کامپیوتر که سعی در ایجاد آن دارد گفته میشود. بیشتر نوشتهها و مقالههای مربوط به هوش مصنوعی آن را «دانش شناخت و طراحی عاملهای هوشمند» تعریف کردهاند. یک عامل هوشمند، ساماندهی است که با شناخت محیط اطراف خود، شانس موفقیت خود را بالا میبرد.
اینکه هوش مصنوعی چیست و چه تعریفی میتوان از آن بیان نمود؟ مبحثی است که تاکنون دانشمندان به یک تعریف جامع در آن نرسیدهاند و هریک تعریفی را ارائه نمودهاند که در زیر نمونهای از این تعاریف آمدهاست.
- هنر ایجاد ماشینهایی که وظایفی را انجام میدهند که انجام آنها توسط انسانها نیاز به هوش دارد (کورزویل- ۱۹۹۰)
- مطالعهٔ استعدادهای ذهنی از طریق مدلهای محاسباتی (کارنیاک و مک درموت - ۱۹۸۵)
- مطالعهٔ اینکه چگونه رایانهها را قادر به انجام اعمالی کنیم که در حال حاضر، انسان آن اعمال را بهتر انجام میدهد. (ریچ و نایت -۱۹۹۱)
- خودکارسازی فعالیتهایی که ما آنها را به تفکر انسانی نسبت میدهیم. فعالیتهایی مثل تصمیمگیری، حل مسئله، یادگیری و … (بلمن -۱۹۷۸)
- تلاشی نو و مهیج برای اینکه رایانهها را قادر به فکر کردن کنیم. ماشینهایی با فکر و حس تشخیص واقعی (هاگلند-۱۹۸۵)
- یک زمینهٔ تخصصی که به دنبال توضیح و شبیهسازی رفتار هوشمندانه به وسیلهٔ فرایندهای رایانهای است. (شالکوف -۱۹۹۰)
- مطالعه محاسباتی که درک، استدلال و عمل کردن را توسط ماشینها را ممکن میسازد. (وینستون - ۱۹۹۲)
- توانایی دست یافتن به کارایی در حد انسان در همهٔ امور شناختی توسط رایانه (آلن تورینگ – ۱۹۵۰)
- هوش مصنوعی دانش و مهندسی ساخت ماشینهای هوشمند و به خصوص برنامههای رایانهای هوشمند است. هوش مصنوعی با وظیفه مشابه استفاده از رایانهها برای فهم چگونگی هوش انسان مرتبط است، اما مجبور نیست خودش را به روشهایی محدود کند که بیولوژیکی باشند. (جان مککارتی – ۱۹۸۰)
هوشمندی مفهومی نسبی دارد و نمیتوان محدوده صحیحی را برای ارائه تعریف از آن مشخص نمود. رفتاری که از نظر یک فرد هوشمند به نظر میرسد؛ ممکن است برای یک فرد دیگر اینگونه به نظر نرسد. اما در مجموع خصوصیات زیر قابلیتهای ضروری برای هوشمندی است:
- پاسخ به موقعیتهای از قبل تعریف نشده با انعطاف بسیار بالا و بر اساس بانک دانش
- معنا دادن به پیامهای نادرست یا مبهم
- درک تمایزها و شباهتها
- تجزیه و تحلیل اطلاعات و نتیجهگیری
- توانمندی آموختن و یادگرفتن
- برقراری ارتباط دوطرفه
به فرض اینکه تعاریف بالا را از هوشمندی بپذیریم، موارد زیر فهرستی است از وظایفی که از یک سامانه هوشمند انتظار میرود و تقریباً اکثر دانشمندان هوش مصنوعی بر آن توافق نظر دارند به شرح زیر است:
- تولید گفتار
- تشخیص و درک گفتار (پردازش زبان طبیعی انسان)
- دستورپذیری و قابلیت انجام اعمال فیزیکی در محیط طبیعی و مجازی
- استنتاج و استدلال
- تشخیص الگو و بازشناسی الگو برای پاسخ گویی به مسائل بر اساس دانش قبلی
- شمایلی گرافیکی یا فیزیکی جهت ابراز احساسات و عکسالعملهای ظریف
- سرعت عکسالعمل بالا
کاربردهای هوش مصنوعی
هوش مصنوعی کاربردهای متنوعی دارد. تعدادی از مهمترین کاربردهای هوش مصنوعی شامل استفاده در وسایل نقلیه خودگردان (مثل پهپادها و اتومبیلهای خودران)، تشخیصهای پزشکی، خلق آثار هنری، اثبات قضیههای ریاضی، انجام بازیهای فکری، تعیین هویت تصاویر(تشخیص چهره) و صداها، ذخیره انرژی، جستجوگرهای اینترنتی، تهیه قراردادها و پیشبینی آرای قضایی میشوند.
هوش مصنوعی در اقتصاد
یکی از مهمترین کاربردهای هوش مصنوعی در زمینهٔ تجارت، اقتصاد و کلان داده است. برای مثال، با استفاده از هوش مصنوعی میتوان با ضریب خطای پایینی، تغییرات فصلی و بلندمدت در عرضه یا تقاضای محصولات مختلف را پیشبینی کرد. این موضوع میتواند به شدت در سیاست، اقتصاد کلان و کنترل عرضه و تقاضا مفید واقع شود. همچنین، شرکتهایی مانند گوگل خدماتی در زمینهٔ هوش مصنوعی به شرکتهای بزرگ ارائه میدهند که میتواند به برنامهریزی، انبارگردانی، پیشبینی سیر صعودی یا نزولی فروش در محصولات به خصوص و نیز برندسازی آنها کمک کند.
شبکههای اجتماعی
در شبکههای اجتماعی مطرح مانند توئیتر یا اینستاگرام، برای تشخیص الگوهای رفتاری انسانی، جلوگیری از هرزنامه و انتشار محتوای مجرمانه و نیز شناسایی مخاطبان هدف برای تبلیغات، از هوش مصنوعی استفاده میشود. همچنین، برخی از رباتهای شبکهُ اجتماعی بر پایهٔ هوش مصنوعی فعالیت میکنند تا در بالاترین سطوح رفتارهای انسانی را شبیهسازی نمایند.
هوش مصنوعی در خدمات حقوقی
کاربرد هوش مصنوعی در خدمات حقوقی به سرعت در حال افزایش است و سیستمهای نوین مبتنی بر پردازش زبان طبیعی به تدریج در حال به عهده گرفتن بخشی از وظایف حقوقدانان هستند. نرمافزارهای مبتنی بر تکنولوژی هوش مصنوعی در حال حاضر امکان تهیه قراردادهای دقیق، تحلیل قراردادها و اسناد حقوقی موجود و پیشبینی آرای دادگاهها را فراهم کردهاند.
فلسفه هوش مصنوعی
مقالهٔ اصلی: فلسفه هوش مصنوعی
بهطور کلی ماهیت وجودی هوش به مفهوم جمعآوری اطلاعات، استقراء و تحلیل تجربیات به منظور رسیدن به دانش یا ارائه تصمیم است. در واقع هوش به مفهوم بهکارگیری تجربه به منظور حل مسائل دریافت شده تلقی میشود. هوش مصنوعی علم و مهندسی ایجاد ماشینهایی هوشمند با بهکارگیری از کامپیوتر و الگوگیری از درک هوش انسانی یا حیوانی و نهایتاً دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی است.
در مقایسهٔ هوش مصنوعی با هوش انسانی میتوان گفت که انسان قادر به مشاهده و تجزیه و تحلیل مسائل در جهت قضاوت و اخذ تصمیم است در حالی که هوش مصنوعی مبتنی بر قوانین و رویههایی از قبل تعبیه شده بر روی کامپیوتر است. در نتیجه علیرغم وجود رایانههای بسیار کارا و قوی در عصر حاضر ما هنوز قادر به پیاده کردن هوشی نزدیک به هوش انسان در ایجاد هوشهای مصنوعی نبودهایم.
بهطور کلّی، هوش مصنوعی را میتوان از زوایای متفاوتی مورد بررسی و مطالعه قرار داد. مابین هوش مصنوعی به عنوان یک هدف، هوش مصنوعی به عنوان یک رشتهٔ تحصیلی دانشگاهی یا هوش مصنوعی به عنوان مجموعهٔ فنون و راهکارهایی که توسط مراکز علمی مختلف و صنایع گوناگون تنظیم و توسعه یافتهاست، باید تفاوت قائل بود.
اتاق چینی
اتاق چینی یک آزمایش ذهنی است که اولین بار توسط مقاله جان سرل بهنام «ذهنها، مغزها، و برنامهها» (به انگلیسی: Minds, Brains, and Programs) در مجله «علوم رفتاری و ذهنی» (به انگلیسی: Behavioral and Brain Sciences) در سال ۱۹۸۰ منتشر شد. وی با این سؤال که آیا یک برنامه هوشمند مترجم که توانایی ترجمه از زبان چینی به زبان انگلیسی را دارد، ضرورتی برای فهم موضوع مورد ترجمه دارد یا خیر و با تشبیه ذهن به یک برنامهٔ هوشمند رایانهای این استدلال را در برابر مواضع فلسفی کارکردگرایی و نظریه محاسباتی ذهن که در آنها، ذهن به عنوان یک محاسبهگر یا دستکاری کنندهٔ نماد عمل میکند، قرار داد.[۲۷] در واقع نتایج حاصل از آزمایش اتاق چینی حکایت از این دارد که هیچ برنامهای نمیتواند به کامپیوتر ذهن، فهم یا آگاهی بدهد. حال آن برنامه هر آنچه میخواهد هوشمند باشد و باعث شود کامپیوتر همچون انسان رفتار کند. اگر چه این آزمایش در اصل جوابی برای اظهارات محققان هوش مصنوعی بود، اما این ادعا در برابر اهداف تحقیقات هوش مصنوعی قرار نمیگیرد چرا که این موضوع حدی برای هوشمندی کامپیوتر قائل نیست. همچنین این آزمایش مختص رایانههای دیجیتال است و دامنه آن همه ماشینها نیستند.[۲۷]
چگونگی استفاده هوش مصنوعی
هوش مصنوعی چگونه استفاده میشود؟
بهطور کلی هوش مصنوعی به دو دسته زیر تفکیک میشود:
Narrow AI یا هوش مصنوعی ضعیف: این نوع هوش مصنوعی در یک زمینه محدود عمل میکند و شبیهسازی هوش انسانی است. هوش مصنوعی ضعیف اغلب بر روی یک کار مشخص تعریف میشود و در محدوده تعریفش بسیار عالی عمل میکند. شاید این ماشینها بسیار هوشمند به نظر برسند اما حقیقت این است که حتی از ابتدائیترین سطوح هوش انسانی هم سادهتر عمل میکنند.
Artificial General Intelligence یا هوش مصنوعی عمومی: که با عنوان هوش مصنوعی قوی هم شناخته میشود، نوعی از هوش مصنوعی است که بیشتر در فیلمها دیدهایم، مانند رباتهای فیلم Westworld. هوش مصنوعی قوی بسیار شبیه به انسان عمل میکند چنانکه میتواند تواناییهای خود را بر حل مسائلی در حوزههای مختلف به کار بگیرد.[۲۸]
مدیریت پیچیدگی
ایجاد و ابداع فنون و تکنیکهای لازم برای مدیریت پیچیدگی را باید به عنوان هستهٔ بنیادین تلاشهای علمی و پژوهشی گذشته، حال و آینده در تمامی زمینههای علوم رایانه و به ویژه در هوش مصنوعی معرفی کرد. شیوهها و تکنیکهای هوش مصنوعی در واقع، برای حل آن دسته از مسائل به وجود آمدهاست که بهطور سهل و آسان توسط برنامهنویسی تابعی یا شیوههای ریاضی قابل حلّ نبودهاند.
در بسیاری از موارد، با پوشانیدن و پنهان ساختن جزئیّات فاقد اهمیت است که بر پیچیدگی فائق میآییم و میتوانیم بر روی بخشهایی از مسئله متمرکز شویم که مهمتر است. تلاش اصلی در واقع، ایجاد و دستیابی به لایهها و ترازهای بالاتر از هوشمندی انتزاع را نشانه میرود تا آنجا که سرانجام، برنامههای رایانهای درست در همان سطحی کار خواهند کرد که خود انسانها رسیدهاند.
به یاری پژوهشهای گستردهٔ دانشمندان علوم مرتبط، هوش مصنوعی تاکنون راه بسیاری پیمودهاست. در این راستا، تحقیقاتی که بر روی توانایی آموختن زبانها انجام گرفت و همچنین درک عمیق از احساسات، دانشمندان را در پیشبرد این دانش کمک زیادی کردهاست. یکی از اهداف متخصصین، تولید ماشینهایی است که دارای احساسات بوده و دست کم نسبت به وجود خود و احساسات خود آگاه باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.
برای نمونه ربات هوشمندی که بتواند اعضای بدن خود را به حرکت درآورد، نسبت به این حرکت خود آگاه بوده و با آزمون و خطا، دامنه حرکت خود را گسترش میدهد و با هر حرکت موفقیتآمیز یا اشتباه، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته یا حتی میدود یا به روشی برای جابجا شدن دست مییابد که سازندگانش برای او متصور نبودهاند.
هر چند نمونه بالا ممکن است کمی آرمانی به نظر برسد، ولی به هیچ عنوان دور از دسترس نیست. دانشمندان عموماً برای تولید چنین ماشینهایی از وجود مدلهای زندهای که در طبیعت وجود به ویژه آدمی نیز سود بردهاند.
هوش مصنوعی اکنون در خدمت توسعه علوم رایانه نیز هست. زبانهای برنامهنویسی پیشرفته، که توسعه ابزارهای هوشمند را ممکن ساختهاند، پایگاههای دادهای پیشرفته، موتورهای جستجو، و بسیاری نرمافزارها و ماشینها از نتایج پژوهشهایی در راستای هوش مصنوعی بودهاند.
از زبانهای برنامهنویسی هوش مصنوعی میتوان به لیسپ، پرولوگ، کلیپس و ویپی اکسپرت اشاره کرد.
شاخههای هوش مصنوعی در دانش رایانه
شاخههای گوناگونی از هوش مصنوعی در دانشهای رایانهای مورد استفاده قرار میگیرند، برخی این شاخهها عبارتند از:
- یادگیری ماشین (به انگلیسی: Machine Learning)
- شبکهٔ عصبی مصنوعی (به انگلیسی: Neural Networks)
- بینایی ماشین (به انگلیسی: Machine Vision)
- سامانههای خبره (به انگلیسی: Expert System)
- پردازش زبان طبیعی (به انگلیسی: NLP)
- الگوریتم ژنتیک (به انگلیسی: Genetic Algorithm)
- مفاهیم مرتبط با روباتیک (به انگلیسی: Robotic)
تکنیکها و زبانهای برنامهنویسی هوش مصنوعی
عملکرد اولیهٔ برنامهنویسی هوش مصنوعی ایجاد ساختار کنترلی مورد لزوم برای محاسبهٔ سمبولیک است. از مهمترین و پرکاربردترین زبان برای هوش مصنوعی میتوان از پایتون نام برد و در کنار آن زبانهای برنامهنویسی لیسپ و پرولوگ علاوه بر اینکه از مهمترین زبانهای مورد استفاده در هوش مصنوعی هستند خصوصیات نحوی و معنایی آنها باعث شده که آنها شیوهها و راه حلهای قوی برای حل مسئله ارائه کنند.
تأثیر قابل توجه این زبانها بر روی توسعه هوش مصنوعی از جمله تواناییهای آنها به عنوان ابزارهای فکر کردن است. در حقیقت همانطور که هوش مصنوعی مراحل رشد خود را طی میکند، زبانهای لیسپ و پرولوگ بیشتر مطرح میشوند که این زبانها کار خود را در محدودهٔ توسعه سامانههای هوش مصنوعی در صنعت و دانشگاهها دنبال میکنند و طبیعتاً اطلاعات در مورد این زبانها به عنوان بخشی از مهارت هر برنامهنویس هوش مصنوعی است.
- پرولوگ: یک زبان برنامهنویسی منطقی است. یک برنامهٔ منطقی دارای یک سری ویژگیهای قانون و منطق است. در حقیقت خود این نام از برنامهنویسی PRO در LOGIC میآید. در این زبان یک مفسر برنامه را بر اساس یک منطق مینویسد. ایدهٔ استفادهٔ توصیفی محاسبهٔ اولیه برای بیان خصوصیات حل مسئله یکی از محوریتهای پرولوگ است که برای علم کامپیوتر بهطور کلی و بهطور جزئی برای زبان برنامهنویسی هوشمند مورد استفاده قرار میگیرند.[۲۹]
- لیسپ: اصولاً یک زبان کامل است که دارای عملکردها و لیستهای لازمه برای توصیف عملکردهای جدید، تشخیص تناسب و ارزیابی معانی است. لیسپ به برنامهنویس قدرت کامل برای اتصال به ساختارهای اطلاعاتی را میدهد.[۳۰] گر چه لیسپ یکی از قدیمیترین زبانهای محاسباتی است که هنوز فعال است ولی دقت کافی در برنامهنویسی و طراحی توسعه باعث شدهاست که این یک زبان برنامهنویسی فعال باقی بماند. در حقیقت این مدل برنامهنویسی طوری مؤثر بودهاست که تعدادی از دیگر زبانها مانند اف پی، امال و اسکیم براساس عملکرد برنامهنویسی آن بنا شدهاند. یکی از مهمترین برنامههای مرتبط با لیسپ برنامهٔ اسکیم است که یک تفکر دوباره در بارهٔ زبان در آن وجود دارد که به وسیلهٔ توسعه هوش مصنوعی و برای آموزش و اصول علم کامپیوتر مورد استفاده قرار میگیرد.
استفاده از رابطهای برنامهنویسی یا همان API میتواند استفاده از هوش مصنوعی در پروژههای برنامهنویسی را بسیار سادهتر سازد. APIهای هوش مصنوعی، رابطهای RESTful هستند که به برنامهنویس اجازه میدهند به کمک مدلهای از پیش تمرین داده شده شرکتهای مختلف استفاده کنند و قابلیتهای مرتبط با هوش مصنوعی نرمافزار خود را گسترش دهند در واقع در API برنامهها از قابلیتهای کاربردی یکدیگر استفاده مینمایند تا توانایی خود را افزایش دهند بهطور مثال برنامههای مسیریابی از API نقشه گوگل و مسیریابی ترافیک ماهوارهای گوگل بهره میبرند و توانایی خود را بسیار بهبود میبخشند. برای معرفی برخی از این APIهای هوش مصنوعی میتوان از Wit.ai, Api.ai و ملیسا نام برد.
عاملهای هوشمند
مقالهٔ اصلی: کارگزار هوشمند
عاملها (به انگلیسی: Agents) قادر به شناسایی الگوها و تصمیمگیری بر اساس قوانین فکر کردن خود هستند. قوانین و چگونگی فکر کردن هر عامل در راستای دستیابی به هدفش، تعریف میشود. این سامانهها بر اساس قوانین خاص خود فکر کرده و کار خود را به درستی انجام میدهند. پس عاقلانه رفتار میکنند، هر چند الزاماً مانند انسان فکر نمیکنند.
در بحث هوشمندی اصطلاح پیس (به انگلیسی: PEAS) سرنام واژههای "کارایی (به انگلیسی: Performance)"، "محیط (به انگلیسی: Environment)"، "اقدام گر (به انگلیسی: Agent)" و "حسگر (به انگلیسی: Sensor)" است.
سامانههای خبره
مقالهٔ اصلی: سیستمهای خبره
سامانههای خبره زمینهای پرکاربرد در هوش مصنوعی و مهندسی دانش است که با توجه به نیاز روزافزون جوامع بر اتخاذ راه حلها و تصمیمات سریع در مواردی که دانشهای پیچیده و چندگانهٔ انسانی مورد نیاز است و بر اهمیت نقش آنها نیز افزوده میشود. سامانههای خبره به حل مسائلی میپردازند که بهطور معمول نیازمند تخصصهای کاردانان و متخصّصان انسانی است. بهمنظور توانایی بر حل مسائل در چنین سطحی (ترازی)، دسترسی هرچه بیشتر اینگونه سامانهها به دانش موجود در آن زمینه خاص ضروری میگردد.
اخبار جعلی، دیپ فیک و امنیت سیاسی
یک دیپ فیک ویدئو: هشدار ولادیمیر پوتین به آمریکاییها در مورد دخالت در انتخابات و افزایش شکاف سیاسی
مفهومی به نام دیپفیک (به انگلیسی: Deepfakes) به هوشهای مصنوعی اطلاق میشود که قادر هستند چهره و صدای افراد را بازسازی و شبیهسازی نمایند. امروزه تشخیص نسخههای فیک و تقلبی از نسخههای اصلی کار بسیار مشکلی است.[۳۱]
این موضوع میتواند تهدیدی برای افراد مشهور اعم از هنرمندان، ورزشکاران و سیاستمداران باشد و زندگی حرفهای آنها را دچار خدشه و چالش نماید. بازسازی سخنرانی یک رئیسجمهور و درج موارد ناخواسته در میان آن یا بازسازی تصاویر سیاستمداران در یک فضای خاص میتواند نمونهای از این موارد باشد.[۳۲]
بهطورکلی هوش مصنوعی دیپفیک، یک فناوری تغییر دهنده محتوا محسوب میشود. طبق گزارش ZDNet دیپ فیک «چیزی را ارائه میدهد که در واقع رخ ندادهاست». طبق این گزارش ۸۸٪ آمریکاییها معتقدند دیپ فیک بیشتر از فایده باعث آسیب میشود اما تنها ۴۷٪ آنها معتقدند که ممکن است مورد هدف قرار گیرند. با اوجگیری رقابتهای انتخاباتی شکلگیری فیلمهای تبلیغاتی جعلی میتواند تهدیدی برای سیاستمداران محسوب شود.[۳۳]
هوش مصنوعی دارای سطوح و انواع مختلفی است که توانایی و عملکرد هر یک از آنها در شبیهسازی هوش و تواناییهای انسانی متفاوت است. برخی از انواع هوش مصنوعی تنها قابلیت انجام کارهای ساده را دارند؛ اما در نوع پیشرفته میتوانند در برخی کارها از انسانها هم پیشی بگیرند.
در این مطلب قصد داریم با انواع هوش مصنوعی، عملکرد و کاربردهای هر یک از آنها و تفاوتها و شباهتهای آنها با یکدیگر آشنا شویم. در گذشته در مقالهای شما را بطور کامل با هوش مصنوعی آشنا کردیم، حالا میخواهیم به سراغ انواع مختلف آن برویم.
فهرست مطالب
انواع هوش مصنوعی از نظر قابلمقایسه بودن تواناییهای آنها با تواناییهای انسان
هوش مصنوعی واکنشی
هوش مصنوعی دارای حافظه محدود
یادگیری تقویتی (Reinforcement learning)
حافظه طولانی کوتاهمدت (Long Short Term Memory یا بهاختصار LSTM)
شبکههای مولد دشمن گونه تکاملی (Evolutionary Generative Adversarial Networks یا بهاختصار E-GAN)
روشهای پیادهسازی هوش مصنوعی دارای حافظه محدود بهصورت عملی
نظریه ذهن
هوش مصنوعی خودآگاه
انواع هوش مصنوعی از نظر عملکرد
هوش محدود مصنوعی
هوش عمومی مصنوعی
ابر هوش مصنوعی یا فراهوش
هوش مصنوعی قوی و ضعیف
انواع هوش مصنوعی از نظر قابلمقایسه بودن تواناییهای آنها با تواناییهای انسان
به دلیل اینکه هدف پژوهشگران حوزه هوش مصنوعی ساخت دستگاههایی با قابلیت تقلید تواناییهای شبه انسانی است، معیار دستهبندی انواع هوش مصنوعی، میزان توانایی هریک از آنها در تقلید دقیق از تواناییهای انسانی است؛ بنابراین انواع هوش مصنوعی میتوانند بسته به قابلمقایسه بودن آنها با انسان از نظر تطبیقپذیری و عملکرد در یکی از این دستهبندیها قرار گیرند. طبیعتاً آن نوع از هوش مصنوعی که قابلیت انجام تواناییهای شبهانسانی بیشتری را داشته باشد و بتواند آنها را ماهرانهتر انجام دهد، نوع تکاملیافتهتری محسوب میشود. در مقابل نوعی که عملکرد و قابلیتهای محدودتری داشته باشد، نوع سادهتر و کمتر تکاملیافته است.
هوش مصنوعی بر اساس این معیار معمولاً به دو روش دستهبندی میشود. در یک روش انواع مختلف هوش مصنوعی و دستگاههای ایجاد شده بر پایه آنها بر اساس شباهت به ذهن انسان و همچنین وجود توانایی تفکر یا حتی توانایی احساس کردن مانند انسان دستهبندی میشوند. چهار گروه اصلی برای دستهبندی هوش مصنوعی یا سیستمهای ایجاد شده بر پایه هوش مصنوعی وجود دارد که شامل هوش مصنوعی واکنشی (Reactive Machines)، هوش مصنوعی دارای حافظه محدود (Limited Memory)، هوش مصنوعی ایجاد شده بر پایه نظریه ذهن (Mind theory) و هوش مصنوعی خودآگاه (self-aware AI) میشود.
انواع هوش مصنوعی
اصلیترین انواع هوش مصنوعی
هوش مصنوعی واکنشی
سیستمهای ایجاد شده بر پایه این نوع، قدیمیترین سیستمهای هوش مصنوعی هستند و تواناییهای آنها بهشدت محدود است. این نوع از سیستمها تنها میتوانند از توانایی ذهنی انسان برای پاسخ دادن به محرکهای مختلف تقلید کنند و فاقد تواناییهای مبتنی بر حافظه هستند؛ این موضوع به معنای این است که چنین سیستمهایی برای انجام فعالیتهایی که در حال انجام آنها هستند، نمیتوانند از تجارب قبلی خود کمک بگیرند. به بیان ساده چنین سیستمهایی توانایی یادگیری ندارند.
انواع هوش مصنوعی
استفاده از هوش مصنوعی واکنشی برای بازی شطرنج
این سیستمها تنها میتوانند برای ارائه پاسخ خودکار به مجموعهای محدود از دادهها یا ترکیب سادهای از دادهها استفاده شوند. آنها نمیتوانند برای تقویت عملکرد خود در انجام کارهایی که قبلاً نیز آنها را انجام دادهاند، از حافظه استفاده کنند. کامپیوتر Deep blue شرکت IBM که توانست در سال ۱۹۹۷ در یک مسابقه شطرنج، «گری کاسپارف» (Grandmaster Garry)، قهرمان شطرنج جهان از سال ۱۹۸۵ تا سال ۲۰۰۰ را شکست دهد، یکی از نمونههای شناختهشده دستگاههای واکنشی است.
ابزارهای مورداستفاده برای فیلتر کردن ایمیلهای اسپم مثل ایمیلهای تبلیغاتی و ایمیلهای ارسالشده با هدف فیشینگ (دامهای سایبری با هدف به دست آوردن اطلاعاتی مانند نام کاربری، رمز عبور و اطلاعات حساب بانکی) و سیستم پیشنهادکننده محتوا در سرویسهای استریم محتوا مانند نتفلیکس نیز از هوش مصنوعی واکنشی استفاده میکنند.
هوش مصنوعی دارای حافظه محدود
این نوع از هوش مصنوعی علاوه بر اینکه از تمام قابلیتهای هوش مصنوعی واکنشی برخوردار است، میتواند برای تصمیمگیری از دادههای ورودی که قبلاً در اختیار آن قرار گرفته نیز استفاده کند. تقریباً تمام کاربردهای هوش مصنوعی که امروزه در حال بهرهمندی از آنها هستیم و تمام سیستمهای ایجاد شده بر پایه هوش مصنوعی جزو این دسته هستند.
چنین سیستمهایی (مثل سیستمهایی که از فناوری یادگیری عمیق استفاده میکنند) با استفاده از حجم گسترده از دادههای ورودی ذخیره شده در حافظه خود آموزش میبینند تا بتوانند برای حل مشکلاتی که ممکن است در آینده با آنها مواجه شوند، یک مدل مرجع ایجاد کنند؛ بهعنوانمثال یک سیستم تشخیص تصویر مبتنی بر هوش مصنوعی با استفاده از هزاران عکس و برچسبهای آنها برای نامگذاری تصاویری که سیستم اسکن میکند، آموزش داده میشود.
زمانی که تصویری توسط چنین سیستمی اسکن میشود، از تصاویری که برای آموزش در اختیار سیستم قرار گرفته است بهعنوان مرجع برای تشخیص محتوای تصویر اسکن شده استفاده میکند. چنین فرآیندی به تقویت عملکرد سیستم کمک میکند و استفاده این سیستم از دادههایی که فراگرفته است، باعث میشود دقت آن در برچسبگذاری تصاویر بهتدریج افزایش یابد.
تقریباً تمام تواناییهای مختلف هوش مصنوعی که امروزه در حال بهرهمندی از آنها هستیم، برپایه سیستمهای هوش مصنوعی دارای حافظه محدود ایجاد شدهاند؛ از چتباتها گرفته تا دستیارهای مجازی و سیستمهای خودران.
بهعنوانمثال در سیستم خودروهای خودران از این نوع هوش مصنوعی برای مطلع شدن از سرعت و جهت حرکت سایر خودروهای اطراف این خودروها و همچنین بررسی شرایط جاده و تنظیم تنظیمات مختلف خودروهای خودران بر اساس این شرایط استفاده میشود. هوش مصنوعی دارای حافظه محدود در این خودروها برای پردازش و تفسیر دادههای ورودی و افزایش امنیت چنین خودروهایی در جادهها نیز استفاده میشود.
هوش مصنوعی حافظه محدود
البته این هوش مصنوعی همانطور که از نامش مشخص است، حافظه محدودی دارد و اطلاعاتی که در سیستمهای دارای این نوع از هوش مصنوعی ذخیره میشوند، برای مدت زیادی حفظ نمیشوند.
هوش مصنوعی دارای حافظه محدود میتواند از طریق سه روش یادگیری ماشینی آموزش ببیند که شامل موارد زیر میشود:
یادگیری تقویتی (Reinforcement learning)
این روش یادگیری به هوش مصنوعی کمک میکند در چرخههای متعدد آزمونوخطا پیشبینیهای بهتری داشته باشد. یادگیری تقویتی برای آموزش دادن کامپیوتر برای انجام بازیهایی مثل شطرنج، گو (یک نوع بازی تختهای) و بازیهای استراتژیک مثل DOTA 2 با انسان استفاده میشود تا کامپیوتر به حریف قدرتمندی برای انسان تبدیل شود و انسان بهسادگی نتواند آن را شکست دهد.
حافظه طولانی کوتاهمدت (Long Short Term Memory یا بهاختصار LSTM)
پژوهشگران حوزه هوش مصنوعی میدانند که دادههایی که قبلاً در اختیار سیستمهای هوش مصنوعی قرار گرفتهاند به پیشبینی آیتمهای متوالی بعدی سیستم کمک میکنند؛ مخصوصاً در زبانها. بنابراین آنها مدلی را ایجاد کردهاند که حافظه طولانی کوتاهمدت نام دارد. این مدل یادگیری دادههای جدید را بهعنوان آیتمهایی با اهمیت بیشتر و دادههای قدیمی را بهعنوان آیتمهایی با اهمیت کمتر برچسب میزند.
شبکههای مولد دشمن گونه تکاملی (Evolutionary Generative Adversarial Networks یا بهاختصار E-GAN)
این شبکهها دارای حافظههایی هستند که در هر مرحله از تکامل، وارد سطح بالاتری از تکامل میشود و در حقیقت مدلهای ایجاد شده بر پایه آنها مدلهایی با قابلیت رشد مستمر محسوب میشود.
استفاده از این شبکهها در حقیقت روشی مؤثر برای آموزش مدلهای ایجادکننده (Generative Models) بر اساس دادههای واقعی هستند و یکی از روشهای ساخت عکس و فیلم ساختگی با استفاده از هوش مصنوعی (دیپ فیک) به شمار میرود. به بیان ساده این شبکهها میتوانند با بهرهمندی از دادههای ورودی یک محصول خروجی ایجاد کند.
در ضمن E-GAN روند تکامل طبیعی انسان در سیاره زمین را برای هوش مصنوعی شبیهسازی میکند. همانطور که میدانید، انسان در طول روند تکامل خود از زمان پیدایش انسانهای نخستین تاکنون بهتدریج به تواناییهای و زندگی بسیار بهتری نسبت به نیاکان خود دست یافته است.
روشهای پیادهسازی هوش مصنوعی دارای حافظه محدود بهصورت عملی
این نوع هوش مصنوعی به دو روش عمل میکند:
اعضای یک تیم همیشه مدلی را با استفاده از دادههای جدید آموزش میدهند.
محیط هوش مصنوعی با روشی ساخته میشود که مدلهای مختلف در آن بهصورت خودکار آموزش میبینند و بر اساس کاربرد و رفتار خود دوباره از نو ایجاد میشوند.
تکنیک یادگیری ماشینی فعال در هوش مصنوعی حافظه محدود دارای پنچ مرحله است که به شرح زیر هستند:
یادگیری بر اساس دادههای ورودی: برای آموزش یک سیستم هوش مصنوعی ابتدا باید دادههایی در اختیار آنان قرار داده شود.
ساخت مدل یادگیری ماشین
پیشبینی توسط مدل
دریافت بازخورد: مدل یادگیری ماشینی واکنش انسان یا محیط شبیهسازی به پیشبینی خود را دریافت میکند
تبدیل بازخوردها به داده جهت استفاده از آنها برای تقویت عملکرد سیستم
پس از انجام این مرحله دوباره فرآیند تکرار میشود.
نظریه ذهن
با وجود اینکه دو نوع قبلی هوش مصنوعی بهصورت گسترده ایجاد شدهاند و به میزان وسیعی در حال استفاده هستند، تمام فناوریها و کاربردهای معرفیشده بر اساس این نوع از هوش مصنوعی و هوش مصنوعی خودآگاه، یا در حد طرح مفهومی هستند یا در مراحل اولیه توسعه و ایجاد قرار دارند. نظریه ذهن سطح بعدی از هوش مصنوعی است که پژوهشگران تازه در حال ورود به این حیطه هستند و امیدوارند بتوانند فناوریهای مبتکرانهای را بر پایه این سطح از هوش مصنوعی ایجاد کنند. هوش مصنوعی در سطح نظریه ذهن میتواند افرادی را که با آنها در تعامل است، با فهم روندهای مرتبط با نیازها، احساسات، باورها و افکار آنها، کاملاً درک کند.
با وجود اینکه هوش عاطفی مصنوعی هنوز یک فناوری نوپا محسوب میشود و برای پژوهشگران برجسته هوش مصنوعی یک حیطه پژوهشی جذاب به شمار میرود، دستیابی به چنین سطحی از هوش مصنوعی، توسعه انواع دیگر این فناوری را نیز میطلبد؛ زیرا این سطح از هوش مصنوعی برای درک حقیقی تمام نیازهای انسانی نیازمند چنین پیشرفتی است. این سطح از هوش مصنوعی باید تکتک انسانها را بهعنوان افرادی که ذهن هر یک از آنها با عوامل مختلفی شکل داده شده است، درک کند و به بیان ساده تمام انسانها را بفهمد.
ربات سوفیا
ربات سوفیا با قابلیت شبیهسازی حالتهای عاطفی چهره انسان در چهره خود
اجازه دهید برای درک تفاوت هوش مصنوعی ایجاد شده بر پایه نظریه ذهن با سطوح پایینتر این فناوری، مثالی کاملاً ساده و قابلفهم بیان کنیم. همانطور که میدانید، دستیارهای مجازی مختلف مثل سیری، الکسا، گوگل اسیستنت و غیره، پس از دریافت فرمانهای صوتی تنها آنها را انجام میدهند و واکنش خاصی به این فرمانها ندارند.
رباتهای انساننمایی که میتوانند حالتهای عاطفی چهره انسان را بهسرعت تشخیص دهند و با این روش بهخوبی با انسانها ارتباط برقرار کنند (مثل ربات مشهور سوفیا)، دارای این نوع از هوش مصنوعی هستند؛ حتی برخی از این رباتها میتوانند پس از تشخیص حالتهای مختلف چهره انسان، بهسرعت از این حالتها تقلید و آنها را در چهره خود ایجاد کنند!
هوش مصنوعی خودآگاه
این نوع هوش مصنوعی که آخرین مرحله تکامل هوش مصنوعی محسوب میشود، در حال حاضر تنها در حد نظریه است؛ زیرا هنوز سختافزار و الگوریتمهای لازم برای پشتیبانی از آن وجود ندارد. هوش مصنوعی خودآگاه که میتواند توضیحات و استدلالهای مختلفی را ارائه دهند، به حدی تکاملیافته است که میتواند مانند مغز انسان عمل کند. جالب است بدانید که دهها سال از آغاز تلاش برای دستیابی به این سطح از هوش مصنوعی میگذرد و چه در زمان حال و چه در آینده بزرگترین هدف برای پژوهشگران حیطه هوش مصنوعی محسوب میشود.
Artificial intelligence خودآگاه
این نوع از هوش مصنوعی نهتنها میتواند احساسات افرادی که با آنها در تعامل است درک کند و حتی احساسات تنها را برانگیزد، بلکه خود آن هم دارای عواطف و احساسات، نیازها و اعتقادات است و حتی ممکن است مانند انسان خواستههای متفاوتی داشته باشد؛ البته در صورت تمایل برای استفاده از این سطح از هوش مصنوعی باید با احتیاط کامل از آن استفاده کرد و افراد مطرح در حوزه فناوری بهخوبی به این موضوع واقف هستند.
اگرچه خودآگاهی هوش مصنوعی میتواند روند پیشرفت ما را بهعنوان ساکنان یک تمدن بسیار سریع کند؛ اما همین مزیت میتواند پیامدهای فاجعه باری را به دنبال داشته باشد؛ زیرا زمانی که هوش مصنوعی به سطح خودآگاهی برسد، ممکن است برخی مواقع بخواهد از خود محافظت کند و چنین تصمیمی میتواند برای انسان بسیار تهدیدکننده باشد یا حتی نسل بشر را نابود کند. در ضمن هوش مصنوعی در این سطح میتواند از هوش انسانی پیشی بگیرد و حتی نقشههای پیچیده برای از میان برداشتن بشر و نابودی او طرح کند.
اجازه دهید برای فهم بهتر سطح بالای عملکرد این نوع از هوش مصنوعی مثالی را بیان کنیم. رباتهای دارای این نوع از هوش مصنوعی ممکن است در واکنش به کارهایی که انسانهای اطراف آنها انجام میدهند، عصبانی، ناراحت یا خوشحال شوند.
انواع هوش مصنوعی از نظر عملکرد
هوش مصنوعی را میتوان بر این اساس به سه دسته تقسیم کرد که شامل هوش محدود مصنوعی یا ضعیف (Artificial Narrow Intelligence یا بهاختصار ANI)، هوش عمومی مصنوعی یا هوش جامع مصنوعی (Artificial General Intelligence یا بهاختصار AGI) و ابر هوش مصنوعی یا فراهوش (Artificial Superintelligence یا بهاختصار ASI) میشود.
هوش محدود مصنوعی
تمام سیستمهای هوش مصنوعی که اکنون استفاده میشوند، بر اساس این نوع هوش مصنوعی ایجاد شدهاند؛ حتی پیچیدهترین سیستمهای هوش مصنوعی با بیشترین تواناییها و قابلیتها که تا به امروز ساخته شدهاند نیز بر پایه این نوع هوش مصنوعی ایجاد شدهاند. هوش محدود مصنوعی به سیستمهای اشاره میکند که با استفاده از قابلیتهای شبهانسانی خود تنها میتوانند یک وظیفه را بهصورت خودکار و مستقل انجام دهند. چنین دستگاههایی تنها میتوانند وظایفی را انجام دهند که برای آن برنامهریزی شدهاند و هیچ کاری فراتر از این وظایف نمیتوانند انجام دهند؛ بنابراین این نوع هوش مصنوعی توانمندیهای بسیار محدودی دارد.
انواع هوش مصنوعی
سیستمهای هوش مصنوعی مورداستفاده در صنایع بر پایه هوش محدود مصنوعی ایجاد شدهاند
این نوع از هوش مصنوعی بر اساس دستهبندی ذکرشده در بخش قبلی، در دسته هوش مصنوعی واکنشی و هوش مصنوعی دارای حافظه محدود قرار میگیرد. حتی آن دسته سیستمهای هوش مصنوعی کنونی که برای آموزش خودشان از فناوریهای یادگیری ماشینی و یادگیری عمیق استفاده میکند نیز جزو هوش محدود مصنوعی هستند.
هوش عمومی مصنوعی
هوش عمومی مصنوعی را میتوان توانایی یک عامل هوش مصنوعی برای یادگیری، درک، فهم و انجام کارهای مختلف، درست مانند انسان تعریف کرد. سیستمهای ایجاد شده برپایه این سطح از هوش مصنوعی قادر خواهند بود بهصورت مستقل تواناییهای مختلفی را به دست آورند، بین منابع مختلف اطلاعاتی ارتباط برقرار کنند و اطلاعات لازم را از آنها به دست آورند.
هوش عمومی مصنوعی
چنین قابلیتهایی علاوه بر اینکه باعث میشود مدتزمان لازم برای آموزش چنین سیستمهایی به میزان قابلتوجهی کاهش پیدا کند، امکان انجام چند فعالیت مختلف توسط سیستم درست مانند انسان را نیز فراهم میکند.
ابر هوش مصنوعی یا فراهوش
شاید این سطح از هوش مصنوعی والاترین هدف پژوهشگران حوزه هوش مصنوعی است و قطعا در آینده ابر هوش مصنوعی توانمندترین شکل هوش مصنوعی خواهد بود. این نوع از هوش مصنوعی علاوه بر اینکه میتواند از هوش چندوجهی انسان تقلید کند، به دلیل برخورداری از حافظه بسیار بیشتر و قدرتمندتر نسبت به حافظه انسان و همچنین توانایی پردازش و تحلیل سریعتر دادهها نسبت به بشر و توانایی تصمیمگیری بهتر میتواند در تمام زمینهها از انسان پیشی بگیرد.
ابر هوش مصنوعی یا فراهوش
احتمالا توسعه ابر هوش مصنوعی و عمومی هوش مصنوعی در آینده به سناریویی منجر خواهد شد که در اغلب موارد بهعنوان تکینگی فناوری از آن یاد میشود. طبق پیشبینی ارائهشده در نظریه تکینگی فناوری، سرعت گرفتن و پیشرفت فناوری باعث پیشی گرفتن هوش مصنوعی از هوش انسان میشود و ممکن است چنین اتفاقی پایان نسل بشر را به دنبال داشته باشد. با وجود اینکه به نظر میرسد دسترسی بشر به این سطح هوش مصنوعی و بهرهمندی از تواناییهای بالقوه آن میتواند جذاب باشد؛ اما این موضوع را هم باید در نظر بگیریم که قدرت زیاد هوش مصنوعی میتواند تهدید بزرگی برای بقای بشر یا حداقل سبک زندگی او باشد.
هوش مصنوعی قوی و ضعیف
Artificial intelligence قوی و ضعیف
اگر دستهبندی انواع هوش مصنوعی کمی شما را گیج کرده است، باید بگوییم که هوش مصنوعی را بهصورت ساده میتوان به دو دسته قوی و ضعیف نیز تقسیم کرد. بهطور خلاصه باید بگوییم هوش مصنوعی قوی تقریباً مانند هوش انسان عمل میکند و میتواند قابلیت درک، تفکر و توجه را برای دستگاههای محاسباتی ایجاد شده بر پایه هوش مصنوعی، فراهم کند (درست مانند ذهن انسان). در مقابل هوش مصنوعی ضعیف (مانند دستیارهای مجازی) فاقد قابلیت خودآگاهی یا بسیاری از قابلیتهای شناختی انسان است.
به بیان ساده، هوش مصنوعی ضعیف، هوش مصنوعی به معنای واقعی محسوب نمیشود؛ زیرا این نوع هوش مصنوعی مانند انسان قابلیت تفکر و تصمیمگیری ندارد و سیستمهای ایجاد شده بر پایه آن تنها بر اساس وظایف تعریف شده و برنامههای مشخص شده برای آنها عمل میکنند؛ در حقیقت هدف از ایجاد هوش مصنوعی ضعیف، حل مشکلات خاص و وظایف مرتبط با استدلال با سرعتی سریعتر از سرعت انسان برای انجام چنین کارهایی است. اما در مقابل هوش مصنوعی قوی که هنوز در حد نظریه است، بسیاری از قابلیتهای شناختی مختص انسان را دارد و با هدف ساخت سیستمهایی با هوش ماشینی نزدیک به هوش انسان ایجاد شده است.
در حال حاضر ترسیم چشماندازی از زمانی که بشر بتواند به سطوح پیشرفتهتری از هوش مصنوعی دست پیدا کند، دشوار است؛ اما تردیدی نیست که در حال حاضر هوش مصنوعی تازه در ابتدای راه خود قرار دارد و تا دستیابی به سطوح پیشرفته آن فاصله زیادی داریم. اگر شما هم جزو آن دسته از افرادی هستید که نگران پیشرفت و توسعه تهدیدکننده هوش مصنوعی و تسلط کامل آن بر بشر هستند، باید بگوییم در حال حاضر اصلاً نباید نگران این موضوع باشید؛ زیرا هوش مصنوعی در حال حاضر بیخطر است.
حتی اگر نیمه پر لیوان را میبینید و در مورد آینده هوش مصنوعی امیدوار هستید، باز هم باید بگوییم هنوز میزان بسیار کمی از کاربردها و تواناییهای این فناوری کشف شده و قطعاً آینده جذابتری در انتظار آن است.
به زبان ساده هوش مصنوعی چیست؟ آیا رباتها همان هوش مصنوعی (AI) هستند که همه در موردشان صحبت میکنند؟ هوش مصنوعی چه کارهایی را انجام میدهد؟ آیا آینده نسل بشر در خطر است؟ هوش مصنوعی چگونه فکر میکند؟ اگر شما هم جزء کسانی هستید که واژه هوش مصنوعی به گوشتان خورده اما نمیدانید که هوش مصنوعی چیست یا آشنایی شما با هوش مصنوعی از طریق فیلمهای تخیلی است که دیدهاید و درک درستی از هوش مصنوعی ندارید، ما در این مقاله قصد داریم تا مفهوم واقعی هوش مصنوعی و هر آن چه که باید در موردش بدانید را به شما بگوییم. پس در ادامه با ما همراه باشید.
هوش مصنوعی چیست؟
خیلی از افراد هنوز هم با شنیدن واژه هوش مصنوعی به رباتها فکر میکنند و تصور میکنند که منظور از هوش مصنوعی همان رباتهای بی احساسی هستند که برای انجام راحت تر کارها طراحی شدهاند و قرار است در آینده جای انسانها را بگیرند. مسئول این نوع تفکر به احتمال زیاد فیلمهای علمی و تخیلی است اما واقعیت با آنچه که تصور میشود تفاوت دارد.
هوش مصنوعی به انگلیسی Artificial intelligence که به طور مخفف آن را AI نیز مینامند، در واقع تکنولوژی است که به نحوی قابلیت تفکر دارد. البته این قابلیت تفکر با چیزی که ما به عنوان تفکر انسانی میشناسیم تا حد زیادی تفاوت دارد، اما در حقیقت سعی دارد تا از آن تقلید کند.
هوش مصنوعی چیست
امروزه شاید هوش مصنوعی به آن شکلی که تصور میکنیم وجود نداشته باشد اما باز هم بسیاری از کارهایی که روزانه انجام میدهیم، مانند جستجوی اینترنت یا گشت و گذار در صفحات شبکههای اجتماعی و غیره، همه متاثر از هوش مصنوعی است و در حقیقت در این مواقع داریم از آن استفاده میکنیم. انقدر این استفاده نا ملموس است و به آن عادت کرده ایم که در آن لحظه حس نمیکنیم که داریم از هوش مصنوعی استفاده میکنیم. دلیل اصلی آن این است که نمیدانیم هوش مصنوعی واقعا چیست و چه کارهایی انجام میدهد. از آنجایی که آینده ازآن هوش مصنوعی خواهد بود بهتر است به جای نگران بودن در مورد هوش مصنوعی یاد بگیریم که چه کارهایی را میتوانیم با آن انجام دهیم و اطلاعاتمان را در این زمینه بیشتر کنیم. پس بیایید از ابتدا ببینیم هوش مصنوعی چیست.
تعریف هوش مصنوعی
هنوز تعریف دقیقی که تمامی دانشمندادن بر روی آن توافق داشته باشند از هوش مصنوعی ارائه نشده ولی اکثر تعریفها را میتوان به شکل زیر دسته بندی کرد.
- مانند انسان فکر میکند
- منطقی فکر میکند
- مانند انسان عمل میکند
- منطقی عمل میکند
دو تعریف اول مربوط به فرآیندهای تفکر و استدلال است، در حالی دو تعریف دیگر با رفتار سر و کار دارند.
تعریف سادهای از هوش مصنوعی
هوش مصنوعی یا artificial intelligence شاخهای از علوم رایانه است که هدف اصلی آن تولید ماشینهای هوشمندی است که توانایی انجام وظایفی که نیازمند به هوش انسانی است را داشته باشد. هوش مصنوعی در حقیقت نوعی شبیه سازی هوش انسانی برای کامپیوتر است و منظور از هوش مصنوعی در واقع ماشینی است که به گونهای برنامه نویسی شده که همانند انسان فکر کند و توانایی تقلید از رفتار انسان را داشته باشد. این تعریف میتواند به تمامی ماشینهایی اطلاق شود که بگونهای همانند ذهن انسان عمل میکنند و میتوانند کارهایی مانند حل مسئله و یادگیری داشته باشند.
اهداف هوش مصنوعی
اساس هوش مصنوعی آن است که هوش انسان و طریق کار آن بهگونهای تعریف شود که یک ماشین بتواند آن را به راحتی اجرا کند و وظایفی که بر آن محول میشود را به درستی اجرا کند. هدف هوش مصنوعی در حقیقت بر سه پایه استوار است:
- یادگیری
- استدلال
- درک
هوش مصنوعی (AI) شاخه گستردهای از علوم رایانه است که مربوط به ساخت ماشینهای هوشمند با توانایی انجام وظایفی است که معمولاً به هوش انسان نیاز دارند. هوش مصنوعی یک علم میان رشتهای با چندین رویکرد است، اما پیشرفت در یادگیری ماشین و یادگیری عمیق باعث ایجاد تغییر الگوی تقریباً در هر بخش از صنعت فناوری میشود.
تاریخچه هوش مصنوعی
تاریخچه هوش مصنوعی به سالهای جنگ جهانی دوم بر میگردد. زمانی که نیروهای آلمانی برای رمز نگاری و ارسال ایمن پیامها از ماشین enigma استفاده میکردند و دانشمند انگلیسی، آلن تورینگ در تلاش برای شکست این کدها برآمد. تورینگ به همراه تیمش ماشین bombe را ساختند که enigma را رمز گشایی میکرد. هر دو ماشین enigma و bombe پایههای یادگیری ماشینی (machine learning) هستند که یکی از شاخههای هوش مصنوعی یا همان Artificial intelligence میباشد. تورینگ ماشینی را هوشمند میدانست که بدون اینکه به انسان حس صحبت با ماشین را بدهد، با او ارتباط برقرار کند و این مسئله پایه علم هوش مصنوعی است یعنی ساخت ماشینی که همانند انسان فکر، تصمیم گیری و عمل کند.
ماشین انیگما (Enigma)
رفته رفته با پیشرفت فناوری و سایر سخت افزارهای مورد نیاز برای توسعه هوش مصنوعی، ابزار هوشمند و سرویسهای هوشمندی به بازار عرضه شدند که از هوش مصنوعی در بسیاری از فرآیندهایشان استفاده میکردند. بسیاری از سرویسهای معروفی همانند موتورهای جستجو، ماهوارهها و غیره از هوش مصنوعی استفاده میکردند. با معرفی گوشیهای هوشمند و پس از آن گجتهای هوشمند، هوش مصنوعی گام بلندی را برای ورود به زندگی انسانهای پشت سر گذاشت. از این زمان به بعد هوش مصنوعی برای انسانها جلوه کاربردی تری پیدا کرد و انسانها بیشتر با واژه هوش مصنوعی و کاربردهای آن آشنا شدند.
تفاوت هوش مصنوعی و برنامه نویسی
ما در برنامه نویسی ورودیهای معلوم و مشخص دازیم و با استفاده از دستورات شرطی مانند if و else میتوانیم معادلات را حل کنیم و به نتیجهی دلخواه برسیم ولی مسائلی که با هوش مصنوعی حل میشوند از تنوع ورودی زیادی بهرمند هستند به همین دلیل نمیتوان با برنامه نویسی معمولی تمام جنبهها را پوشش داد مثل یک سیستم تبدیل صدا به متن یا تشخیص چهره که دادههای ورودی آنها بسیار متنوع هستند به همین دلیل مجبور به استفاده از مدلهای هوش مصنوعی برای انجام این کارها هستیم
در مقالهای دیگر به صورت کامل به مهمترین تفاوتهای هوش مصنوعی و برنامه نویسی اشاره کردیم برای خواندن مقاله “تفاوت هوش مصنوعی و برنامه نویسی” بر روی عنوان مقاله کلیک کنید.
شاخههای هوش مصنوعی
هوش مصنوعی یک علم بسیار گسترده و پیچیده است که شاخههای متعددی دارد؛ شاخههای هوش مصنوعی عبارتند از:
- سیستم خبره (Experts Systems)
- رباتیک (Robotics)
- یادگیری ماشین (Machine Learning)
- شبکه عصبی (Neural Network)
- منطق فاری (Fuzzy Logic)
- پردازش زبان طبیعی (Natural Language Processing)
سطوح مختلف هوش مصنوعی
یک سیستم هوش مصنوعی بر اساس آن چه که از دنیای بیرون درک میکند و میتواند به آن پاسخ دهد، دارای سه سطح میباشد. هوش مصنوعی محدود، عمومی و سوپر هوش مصنوعی. در ادامه هر کدام را به تفصیل توضیح میدهیم.
در مقالهای دیگر انواع هوش مصنوعی را معرفی کردیم برای کسب اطلاعات بیشتر به این مقاله مراجعه کنید.
انواع هوش مصنوعی
هوش مصنوعی محدود (artificial narrow intelligence)
در تاریخچه هوش مصنوعی، هوش مصنوعی محدود بسیار زودتر از انواع دیگر هوش مصنوعی پدید آمده است. این روزها نمونههای هوش مصنوعی محدود زیاد است. برای مثال رایانههایی که در بازیهای پیچیدهای مانند شطرنج، تصمیم گیری هوشمندانه در زمینه تجارت و انواع دیگر کارهای مهم توانستهاند بهتر از انسان عمل کنند نمونههایی از هوش مصنوعی محدود هستند. زمانی که در مورد هوش مصنوعی محدود صحببت میکنیم منظورمان سیستمهای هوشمندی است که در انجام دادن یک وظیفه (task) به خصوص بهتر از انسان عمل میکنند. برای مثال سیستم هوشمندی که میتواند به صورت خودکار گفتار را به نوشتار تبدیل کند یا سیستمهای تشخیص چهره که قادرند هویت یک فرد را حتی در شلوغی و سیل عظیمی از جمعیت تشخیص دهند. اگر بخواهیم برخی از کاربردهای هوش مصنوعی محدود را مثال بزنیم، عبارتند از:
- اتومبیلهای خودران که به کمک هوش مصنوعی یاد میگیرند که چگونه رانندگی کنند.
- سیستمهای پردازش تصویر و تشخیص چهره که میتوانند کارهای بسیاری را انجام دهند و عملیات تشخیص هویت افراد را انجام دهند.
- سیستمهای هوش مصنوعی که به انجام فرآیندهای مالی در بانکها و سایر کسب و کارهای مالی کمک میکند.
- دستیارهای هوشمند که بر اساس نیازهایتان به شما کمک میکنند و حتی پروازها و هتلهایتان را از قبل رزرو میکنند.
- و غیره
هوش مصنوعی عمومی (Artificial General Intelligence)
منظور از هوش مصنوعی عمومی ماشینی است که میتواند دنیای اطراف خود را همانند یک انسان درک کند و دارای ظرفیت و گنجایش مشابه برای انجام فعالیتها و وظایفی است که یک انسان به طور معمول آنها را انجام میدهد. در حال حاضر هوش مصنوعی عمومی وجود ندارد اما رد پای آن را میتوانیم در داستانهای دارای ژانر عملی-تخیلی مشاهده کنیم. از نظر تئوری یک هوش مصنوعی عمومی میتواند هم سطح انسان فعالیت کند و یا حتی در زمینههایی مانند حافظه و غیره از او بهتر عمل کند.
هوش مصنوعی عمومی
با این سطح از آگاهی و دانش یک ماشین میتواند تمام کارهایی که زمانی بر انسان محول میشد را بدون نیاز به وجود انسان انجام دهد و با گذشت زمان بیشتر ماشینهای دارای هوش مصنوعی عمومی میتوانند در بسیاری از زمینهها جای انسان را پر کنند. خاتمه دادن به نیاز حضور نیروی انسانی در بسیاری از کارها و استفاده از تکنولوژی هوش مصنوعی عمومی یا کامل میتواند مانند هر تکنولوژی دیگری هر دو جنبه مثبت و منفی در زندگی اجتماعی و فردی انسانها داشته باشد. اما با همهی اینها وجود آن بسیار مفید و در عین حال اجتناب ناپذیر خواهد بود. به کمک هوش مصنوعی عمومی که دارای تواناییها و ظرفیتهای زیادی برای کمک به بشریت میباشد، بسیاری از مشکلاتی انسان امروزی با آن سر و کله میزند، همانند تغییرات شدید آب و هوایی، حل خواهد شد.
سیستمهای هوش مصنوعی عمومی میتواند از کارهای عادی تا کارهای بسیار مهم و خطیر را به بهترین شکل انجام دهند. در سطح عمومی آنها میتوانند کارهایی مثل رانندگی، دستیار شخصی هوشمند با توانایی درک همهی نیازهای کاربر، یک دستیار پزشک و یا سیستم تشخیص بیماری و غیره باشد. در سطوح بالا این سیستمها میتوانند کارهایی را انجام دهند که به زندگی و امنیت و جان انسانها بستگی دارد و میتوانند به خوبی از پس چنین کارهایی بر بیایند.
سوپر هوش مصنوعی(Artificial Super Intelligence)
سوپر هوش مصنوعی در واقع عبارتی است که برای هوش مصنوعی استفاده میشود که سطح هوش و درک انسانی را پشت سر گذاشته و به نوعی دارای هوش فرا بشری خواهد شد. تا به حال هنوز هیچ جامعهای نتوانسته به سوپر هوش مصنوعی دست پیدا کند. در حقیقت رسیدن یا نرسیدن و یا حتی زمان رسیدن به آن در حالهای از ابهام میباشد. هم چنین این مسئله که چنین هوش مصنوعی چه کارهایی انجام میدهد و یا این مسئله که آیا قرار است تهدیدی برای بشر باشد یا فرصتی برای او، هم مبهم است و بسیاری از صاحب نظران نظرات بسیار متفاوتی را در این مورد دارد وبحثی داغ بین صاحبان غولهای تکنولوژی میباشد. برای رسدن به این سطح از هوش مصنوعی، یک سیستم هوشمند باید تست تورینگ را پشت سر گذاشته باشد و هیچ ماشینی تا به حال به سطحی از درک و شعور و وسعت دانش یک انسان بالغ نرسیده است که از این تست سر بلند بیرون آمده باشد.
تفاوت هوش مصنوعی محدود و عمومی و سوپر هوش مصنوعی در چیست؟
هوش مصنوعی محدود (ضعیف) جایی است که ما در حال حاضر در آن قرار داریم و هوش مصنوعی عمومی آیندهای است که میخواهیم به آن برویم و سوپر هوش مصنوعی آیندهای است که برای هوش مصنوعی میبینیم که حاصل تکامل و هوشمند شدن هوش مصنوعی است.
هوش مصنوعی محدود به این معنا است که در آن سیستم هوش مصنوعی میزان خاصی از هوش را در یک زمینه خاص به کار ببرد. در حقیقت این سیستم هنوز یک کامپیوتر است اما یک کامپیوتری که در برخی از زمینهها هوشمندتر از انسان عمل میکند.
معنای هوش مصنوعی عمومی بسیار پیچیدهتر است. این واژه به سیستمی اطلاق میشود که میتوانند همانند یک انسان هر کاری را بکه به او محول میشود را انجام دهد. ایده آل هوش مصنوعی عمومی آن است که بتواند به درک تجربی و شناخت کلی از محیطهایی که در آن قرار میگیرد داشته باشد و هم چنین بتواند دادهها و اطلاعاتی که به او داده میشود را با سرعتی چند برابر انسان پردازش نماید. از این رو میتوانیم بگوییم که سیستمهای هوش مصنوعی عمومی در بعد دانش، توانایی شناختی و سرعت پردازش از انسانها قویتر عمل خواهند کرد نکته مهم این است که این سیستم زاده مغز و علم بشر است.
سوپر هوش مصنوعی همان طور که گفته شد زمانی است که هوش مصنوعی به فراتر از تواناییهای انسان دست خواهد یافت. این سیستم میتواند دارای قدرتهایی باشد که یک انسان از داشتن آن نحروم است. رسیدن به این سیستم در اثر تکامل یافتن هوش مصنوعی عمومی اتفاق خواهد افتاد و ساخت آن هم میتواند به دست بشر باشد و یا اینکه میتواند به دست سیتستمهای هوشمندی باشد که به تکامل دست یافتهاند.
هوش مصنوعی چگونه آموزش میبیند؟
امروزه سیستمهای هوش مصنوعی به کمک یادگیری ماشین و یادگیری عمیق هوشمند میشوند و میتوانند یاد بیرند و آموزش ببینند. در ادامه هر کدام را معرفی میکنیم.
یادگیری ماشین
یادگیری ماشین (Machine Learning) یکی از زیر مجموعههای هوش مصنوعی است که به سیستمها این امکان را میدهد تا به صورت خودکار یادگیری و پیشرفت داشته باشند بدون اینکه نیاز باید تا یک برنامه نویسی مخصوص به آن یادگیری خاص را انجام داد. تمرکز اصلی یادگیری ماشینی بر توسعه برنامههایی است که بتوانند با دسترسی به دادهها، به طور خودکار از آنها برای یادگیری خود سیستم استفاده کنند.
در یادگیری ماشین فرآیند یادگیری با مشاهدات یا دادهها آغاز میشود و سیستم از مثالها، تجارب مستقیم و یا دستور العملها و.. استفاده میکند تا به یک الگو مشخص برسد و بر اساس آن الگو شروع به تصمیم گیری و حل مسئله کند. هدف اصلی یادگیری ماشین آن است که به کامپیوتر اجازه بدهیم که بدون دخالت و کمک انسان به طور اتوماتیک یادگیری داشته باشند و بتواند بر اساس مشاهدات و دادهها رفتار خود را تنیم کند.
الگوریتمهای بسیار مختلفی برای یادگیری ماشین وجود دارد و هر روزه صدها الگوریتم جدید نیز در این زمینه تولید میشوند. به طور معمول این الگوریتمها به وسیله سبک یادگیری (learning style) (مانند یادگیری نظارت شده، یادگیری بدون نظارت، یادگیری نیمه نظارت) و یا با توجه به شباهتشان در فرم و عملکرد ( مانند طبقه بندی، برگشت، درخت تصمیم گیری، دسته کردن، یادگیری عمیق و…) گروه بندی میشوند. صرف نظر از هر دو گروهبندی، تمام الگوریتمهای یادگیری ماشین معمولا در زمینههای زیر فعالیت میکنند:
- نمایش: مجموعهای از طبقه بندی کنندهها یا زبانی که کامیوتر آن را میفهمد.
- ارزشیابی: همچنین معروف به عملکرد هدف/نمره دهی.
- بهینه سازی: روش جست و جو؛ اغلب طبقه بندی کنندهای با بالاترین امتیاز.
هدف اساسی الگوریتمهای یادگیری ماشین تفسیر موفقیت آمیز دادهها و تعمیم یادگیریها به فراتر از نمونههای آموزش داده شده است.
یادگیری عمیق
یادگیری عمیق نوعی از یادگیری ماشین و هوش مصنوعی است که در واقع از روشی که ذهن انسان برای یادگیری موضوع خاصی به کار میگیرد، تقلید میکند. این نوع از یادگیری یکی از عناصر مهم در علم داده میباشد که شامل آمار و مدل سازی پیش بینی است. یادگیری عمیق برای دانشمندان داده که وظیفه جمع آوری، تجزیه و تحلیل و تفسیر مقادیر زیادی از دادهها را دارند، بسیار کاربردی است و روند تحلیل و تفسیر دادهها را سریعتر و آسان تر میکند.
به نوعی میتوان گفت یادگیری عمیق در واقع همان یادگیری ماشین است به گونهای که در سطح کارهای پیچیده، نمایش یا انتزاع، عمل یادگیری را برای یک سیستم هوش مصنوعی انجام میدهد و به این صورت ماشین درک بهتری از واقعیتهای وجودی پیدا میکند و میتواند الگوهای مختلف را شناسایی کند. در سادهترین سطح، یادگیری عمیق را میتوان راهی برای خودکار سازی تجزیه و تحلیل پیش بینیها دانست.
برای شناسایی نحوه کار کرد یادگیری عمیق باید با شبکههای عصبی آشنا باشید. این نوع از یادگیری در واقع همانند یادگیری به وسیله شبکههای عصبی هستند که دارای لایه پنهان زیادی میباشند و هر چقدر در این لایهها جلو تر بروید به مدلهای پیچیدهتر و کاملتری میرسید.
دسته بندی سیستمهای هوش مصنوعی
آرنت هینتز، استادیار زیست شناسی تلفیقی و علوم کامپیوتر دانشگاه ایالتی میشیگان، هوش مصنوعی را به چهار دسته کلی تقسیم بندی میکند. این دسته بندی شامل سیستمهایی که امروزه وجود دارند تا سیستمهای احساسی که هنوز وجود ندارند را در بر میگیرد. این دستهها به شرح زیر هستند:
سیستمهای هوش مصنوعی
نوع اول: ماشینهای انفعالی
نمونه این دسته deep blue است که یک برنامه شطرنج بود که در دهه 1990 توانست گری کاسپاروف، قهرمان شطرنج جهان را شکست دهد. deep blue میتوانست مهرههای روی هر خانه شطرنج را شناسایی کند و حرکتهای پیش رو را پیش بینی کند. مشکل برنامه آن بود که نمیتوانست تجربههای قبلی خود را به یاد بسپارد و از آن برای حرکتهای آیندهاش استفاده کند. این برنامه هربار تمام حرکتهای استراتژیک ممکن خود و رقیب را بررسی و آنالیز میکرد و بهترین آنها را انتخاب میکرد. این نوع از هوش مصنوعی و برنامههای این چنینی برای هدفهای محدودی قابل استفاده هستند و نمیتوانند به راحتی در موقعیتهای دیگری کاربرد داشته باشند.
نوع دوم: حافظه محدود
این سیستم هوش مصنوعی برعکس قبلی میتواند از تجارب گذشته برای تصمیمات آیندهاش استفاده کند. برخی از کارکردهای تصمیم گیری در ماشینهای خود ران از این نوع طراحی هستند. این نوع ماشینها از مشاهداتشان برای تصمیماتی که در آیندهای نه چندان دور میخواهند بگیرند استفاده میکنند. مثلا اینکه لاینی که در آن در حال رانندگی هستند را عوض کنند. البته این نوع مشاهدات و تجربیات به صورت همیشگی ذخیره نمیشوند.
نوع سوم: تئوری ذهن
این نوع از هوش مصنوعی هنوز وجود ندارد اما اساس این عبارت روانشناختی به تمامی اعتقادات و دانشها، آرزوها و آمال و نیت هر فرد بر میگردد و تاثیری که هر کدام از آنها بر تصمیم گیری یک فرد دارد. این هوش مصنوعی قادر به درک و آنالیز این نوع از تصمیم گیریها میباشد.
نوع چهارم: خود آگاهی
در این دسته سیستم هوش مصنوعی آگاهی از خود و هوشیاری وجود دارد. ماشینهای دارای خود آگاهی میتوانند بفهمند که در چه سطح و حالتی هستند و میتوانند از اطلاعاتی که بدست میآورند احساسات دیگران را نتیجه گیری کنند. البته این نوع از هوش مصنوعی نیز همانند مورد سوم هنوز وجود ندارد.
آیا رباتیک همان هوش مصنوعی است؟
رباتیک در حقیقت حوزهای از علم و تکنولوژی است که با رباتها سر و کار دارد و به طور کلی میتوان گفت رباتها ماشینهایی هستند که برای انجام یک سری کارها به صورت اتوماتیک یا نیمه اتوماتیک، از قبل برنامه ریزی شدهاند. رباتیک علمی است که با طراحی، ساخت و برنامه نویسی انواع رباتها سر و کار دارد و تنها بخش کوچکی از زیر مجموعه آن است که به هوش مصنوعی مربوط میشود و با آن ادغام شده و تشکیل رباتهای دارای هوش مصنوعی را میدهد. هوش مصنوعی نیز زیر مجموعهای از علوم کامپیوتر است که به تولید برنامههایی میپردازد که وظایفی که نیاز به هوش انسانی دارد را انجام دهند. الگوریتمهای هوش مصنوعی دارای یادگیری، درک، حل مسئله، درک زبان طبیعی و یا استدلال منطقی میباشند.
از هوش مصنوعی در دنیا کاربردهای متنوع و فراوانی دارد و این تکنولوژی در زمینههای مختلفی برای اتوماتیک کردن و یا هوشمند کردن فرآیندها استفاده میشود. برای مثال موتور جستجوگر گوگل از هوش مصنوعی در جستجو ایش استفاده میکند تا بهترین و نزدیکترین نتیجه به آن چه که کاربر میخواهد را پیدا کند. الگوریتمهای هوش مصنوعی تنها به منظور کنترل رباتها ساخته نشدهاند. در واقع زمانی که از هوش مصنوعی برای کنترل یک ربات استفاده میکنیم، در حقیقت این هوش مصنوعی تنها یک بخشی از سیستم رباتیکی بزرگتری است که این سیستم بزرگتر خود شامل سنسورها، فعال کنندهها و برنامه نویسیهایی است که هوش مصنوعی در آن دخیل نمیباشد. هوش مصنوعی و رباتیک دو علم کاملا جدا از هم هستند و اصلا به یکدیگر شباهتی ندارند و تنها در برخی از بخشها به منظور هوشمند شدن رباتها از هوش مصنوعی استفاده میشود.
در مقالهای دیگر به موضوع “تفاوت هوش مصنوعی با رباتیک” پرداختهایم برای کسب اطلاعات بیشتر در مورد اینکه رباتیک و هوش مصنوعی چه تفاوتی با یکدیگر دارند این مقاله را مطالعه کنید.
کاربرد هوش مصنوعی در کسب و کارهای مختلف
کاربردهای هوش مصنوعی
از این علم میتوان در کسب و کارهای مختلف استفاده کرد و در هر کسب و کاری منفعتهای بسیاری را به همراه خواهد داشت. در ادامه به چند نمونه از این کاربردها در هر حوزه میپردازیم:
هوش مصنوعی در حوزه سلامت
مهمترین نکته در این حوزه بهبود نتایج بیماران و در عین حال کاهش هزینه است. شرکتهای فعال در حوزه سلامت میخواهند با استفاده از یادگیری ماشین، روند تشخیص و درمان را بهتر و سریعتر انجام دهند. یکی از شناخته شدهترین فناوریها در این زمینه سیستم IBM Watson است. این سیستم زبان طبیعی را درک میکند و قادر به پاسخگویی به سوالاتی که از آن پرسیده میشود است. این سیستم تمام اطلاعات مربوط به بیمار از منابع موجود را استخراج میکند تا یک فرضیه ایجاد کند و پس از اطمینان آن را ارائه میدهد. سایر برنامههایی که هوش مصنوعی دارند مانند چت باتها، میتوانند به بیماران برای برنامه ریزی قرار ملاقات، پاسخ به پرسشها، صدور صورت حساب کمک کنند و یا به صورت یک دستیار سلامت مجازی به فرد بازخوردهای پزشکی ارائه دهد.
هوش مصنوعی در حوزه کسب و کار
برای کارها و فرآیندهای بسیار تکراری که در هر کسب و کار توسط انسانها انجام میشود، میتوان از فرآیندهای اتوماسیون رباتیک استفاده کرد. الگوریتمهای یادگیری ماشین میتوانند با analytics و CRM ادغام شوند تا با کشف اطلاعات لازم، بهتر به مشتریان خدمت کنند. از چت باتها نیز میتوان برای ارائه خدمات فوری به مشتریان در وب سایت نیز استفاده کرد.
هوش مصنوعی در حوزه آموزش و پرورش
هوش مصنوعی در این حوزه میتواند به خودکار شدن نمره دهی و درجه بندی دانش آموزان کمک کند و به معلمان زمان بیشتری بدهد. هوش مصنوعی میتواند دانش آموزان را ارزیابی کند و با نیازهای آنها سازگار باشد و با هر فرد متناسب با سرعت او کار کند. سیستمهای مربی هوش مصنوعی میتوانند پشتیبانی بیشتری به دانش آموزان ارائه دهند و اطمینان حاصل کنند که روند آموزش آنها در راه درستی قرار دارد. Artificial intelligence میتواند نحوه یادگیری و مکان یادگیری دانش آموزان را تغییر دهد و حتی برخی از معلمان او را عوض کند.
هوش مصنوعی در حوزه اقتصاد
سیستمهای هوش مصنوعی در برنامههای مالی شخصی، مانند Mint یا Turbo Tax، میتوانند اطلاعات مالی شخصی هر فرد را جمع آوری کنند و به آنها مشاوره مالی دهند. از برنامههای دیگر مانند IBM Watson حتی در روند خرید خانه نیز میتوان استفاده کرد. امروزه نرم افزارها در وال استریت بخش عظیمی از معاملات را انجام میدهند.
هوش مصنوعی در حوزه قانون و قضا
روند کشف اسناد و مدارک غالبا برای انسانها بسیار سخت است. اتوماسیون و هوش مصنوعی میتواند به این فرآیند کمک کرده و کارآمدتر از زمان استفاده کند. استارتاپها در حال ساخت دستیارهای رایانهای هستند که پرسش و پاسخها را غربال میکند و میتوانند با بررسی و طبقه بندی و یک بانک اطلاعاتی، سؤالات برنامه ریزی شده در زمینه هستی شناسی را پاسخ دهد.
هوش مصنوعی قضایی
هوش مصنوعی در حوزه تولید
این زمینهای است که رباتها هرچه تمام تر میتوانند کار را به گردش دربیاورند. رباتهای صنعتی میتوانند تک تک وظایف محول شده را به طور کامل انجام دهند و جدا از کارکنان انسانی فعالیت کنند.
هوش مصنوعی در برقراری امنیت
از هوش مصنوعی و تکنولوژی پردازش تصویر در برقراری امنیت، ردیابی مجرمان، پیدا کردن هویت خلافکاران و… استفاده میشود. این سیستمها قادرند با استفاده از هوش مصنوعی چهره افراد مختلف، موجودیت اشیاء و … را تشخیص دهند و هنگام مشاهده انجام تخلفات یا عملی مجرمانه آن را تشخیص داده و به نهاد مربوطه هشدار دهد.
هوش مصنوعی و تفسیر دادهها
کلان داده یا بیگ دیتا (Big Data) عبارتی است که برای توصیف مقادیر بزرگی از داده (اعم از دادههای ساختار یافته و بدون ساختار) استفاده میشود. از کلان دادهها میتوان برای استخراج اطلاعات مورد نیاز برای تصمیم گیریهای مهم و حیاتی استفاده کرد و حرکات استراتژیک و حساس را با دقت بیشتری اجرا نمود. یک دانشمند داده به کمک کلان دادهها نه تنها قادر به تجزیه و تحلیل نیازهای افراد میباشد بلکه از قوانین حاکم بر بازارها و روندهای مختلف نیز اطلاع مییابد. تحلیل مقادیر زیادی داده، بدون هیچ گونه سیستم هوشمند و تنها به وسیله انسان امکان پذیر نیست. زیرا هم حجم داده بسیار گسترده است و هم هر روز بر میزان این حجم افزوده میشود. بنابراین مشخص است که با استفاده از هوش مصنوعی در تفسیر کلان دادهها است که به بسیاری از مفاهیم جدید میرسیم که نتیجهاش قابلیت متحول کردن بخش عظیمی از جامعه و زندگی انسانها را دارد.
چالشهای هوش مصنوعی
به کارگیری هوش مصنوعی نه تنها در ایران بلکه در بسیاری از کشورهای پیشرفته با چالشهای متعددی مواجه است. چالش عمدهای که کسب و کارها در به کارگیری هوش مصنوعی با آن سر و کار دارند مربوط به افراد و نیروی انسانی، دادهها و اطلاعات مورد نیاز و یا ترجیحات و ترازهای تجاری میباشد. در ادامه هر کدام از این چالشها را به طور مختصر بررسی میکنیم.
چالشهای مربوط با دادهها و اطلاعات
مشکل مربوط به دادهها احتمالا یکی از مسائلی است اکثر شرکتها با آن درگیر خواهند بود. هر سیستم هوش مصنوعی به اندازه دادههایی که به آن داده میشود عملکرد خوبی خواهد داشتدر حقیقت داده عنصر اصلی مورد نیاز تمام راه حلهایی است که هوش مصنوعی قرار است پیش روی یک کسب و کار قرار دهد. برخی از مشکلات مربوط به داده و جمع آوری آن عبارتند از:
- چگونگی کیفیت و کمیت دادهها
- برچسب دادهها
- قابل فهم و شرح بودن
- Case-specific بودن فرآیند آموزش
- جانب داری
- مقابله با خطاهای مدلها
چالشهای مربوط به افراد و نیروهای انسانی
دو مشکل عمده در رابطه با افراد برای به کارگیری هوش مصنوعی وجود دارد و این دو مشکل یکی نبود درکی از هوش مصنوعی در بین افراد غیر متخصص و کارمندان یک شرکت است و دیگری کمبود متخصصان هوش مصنوعی در حوزه هر کسب و کار میباشد. به کارگیری هوش مصنوعی در یک کسب و کار تا حد زیادی نیاز به مدیریتی آشنا با هوش مصنوعی و درک آن تکنولوژی دارد. متاسفانه هنوز بسیاری از افراد به هوش مصنوعی به صورت یک افسانه نگاه میکنند و انتظارات غیر علمی و تا حدی تخیلی از آن دارند و نمیدانند که هوش مصنوعی چه تحولی را میتواند در کسب و کار آنها ایجاد کند.
چالشهای درون سازمانی و سیاستهای درونی هر کسب و کار
در هر کسب و کارو سازمانی برای به کارگیری هوش مصنوعی چند مشکل عمده وجود دارد که ناشی از سیاستهای داخلی سازمان و تصمیمات درون سازمانی است. این چالشها عبارتند از:
- کمبود ترازهای بیزینسی
- دشواری در ارزیابی
- چالشهای ادغام کسب و کار و هوش مصنوعی با یکدیگر
- مسائل حقوقی
برای مطالعه مطالب بیشتر در زمینه هوش مصنوعی و کاربردهای آن به بلاگ عامر اندیش مراجعه کنید.
هوش مصنوعی یا Artificial Intelligence چیست؟
هوش مصنوعی یا artificial intelligence شاخهای از علوم رایانه است که هدف اصلیاش آن است که ماشینهای هوشمندی تولید کند که توانایی انجام وظایفی که نیازمند به هوش انسانی است را داشته باشد. هوش مصنوعی در حقیقت نوعی شبیه سازی هوش انسانی برای کامپیوتر است و منظور از هوش مصنوعی در واقع ماشینی است که به گونهای برنامه نویسی شده که همانند انسان فکر کند و توانایی تقلید از رفتار انسان را داشته باشد.
انواع هوش مصنوعی چیست؟
1. ماشینهای انفعالی مثل حریف کامپیوتری در بازی شطرنج 2. حافظه محدود مثل اتومبیل خودران 3. تئوری ذهن مثل قابلیت درک احساسات انسانی 4.خود آگاهی به معنی توانایی خودکار بهبود عملکرد خود
در هوش مصنوعی از چه فناوریهای استفاده میشود؟
1. یادگیری ماشین به معنی قابلیت آموزش به یک ماشین است 2. یادگیری عمیق به معنی شبیهسازی کردن شبکههای عصبی مغز انسان است
هوش مصنوعی چه کمکی به کسب و کارهای مختلف میکند؟
1. آموزش و پرورش کمک به خودکار شدن نمره دهی و درجه بندی دانش آموزان 2. برقراری امنیت با کمک پردازش تصویر میتواند به ردیابی مجرمان و پیدا کردن هویت خلافکاران کمک کند 3. تفسیر دادهها و استخراج اطلاعات مورد نیاز از دادههای ساختار یافته و بدون ساختار 4. سلامت کمک به روند تشخیص و درمان
آیا رباتیک همان هوش مصنوعی است؟
هوش مصنوعی و رباتیک دو علم کاملا جدا از هم هستند و اصلا به یکدیگر شباهتی ندارند و تنها در برخی از بخشها به منظور هوشمند شدن رباتها از هوش مصنوعی استفاده میشود.